Accelerated large-scale inversion with message passing

نویسنده

  • Felix J. Herrmann
چکیده

To meet current-day challenges, exploration seismology increasingly relies on more and more sophisticated algorithms that require multiple paths through all data. This requirement leads to problems because the size of seismic data volumes is increasing exponentially, exposing bottlenecks in IO and computational capability. To overcome these bottlenecks, we follow recent trends in machine learning and compressive sensing by proposing a sparsity-promoting inversion technique that works on small randomized subsets of data only. We boost the performance of this algorithm significantly by modifying a state-of-the-art `1-norm solver to benefit from message passing, which breaks the build up of correlations between model iterates and the randomized linear forward model. We demonstrate the performance of this algorithm on a toy sparse-recovery problem and on a realistic reverse-time-migration example with random source encoding. The improvements in speed, memory use, and output quality are truly remarkable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invertastic: Large-scale Dense Matrix Inversion

Linear algebraic techniques are widely used in scientific computing, often requiring large-scale parallel resources such as those provided by the ARCHER service. Libraries exist to facilitate the development of appropriate parallel software, but use of these involves intricacies in decomposition of the problem, managing parallel input and output, passing messages and the execution of the linear...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Incomplete Cholesky Parallel Preconditioners with Selective Inversion

Consider the solution of a large linear system when the coe cient matrix is sparse, symmetric, and positive de nite. One approach is the method of \conjugate gradient" (CG) with an incomplete Cholesky (IC) preconditioner (ICCG). A key problem with the design of a parallel ICCG solver is the bottleneck posed by repeated parallel sparse triangular solves to apply the preconditioner. Our work conc...

متن کامل

Full waveform seismic inversion using a distributed system of computers

The aim of seismic waveform inversion is to estimate the elastic properties of the Earth’s subsurface layers from recordings of seismic waveform data. This is usually accomplished by using constrained optimization often based on very simplistic assumptions. Full waveform inversion uses a more accurate wave propagation model but is extremely difficult to use for routine analysis and interpretati...

متن کامل

A Scripting Interface for Swift/T Parallel Workloads Using Messaging Queues

Modern scientific computing applications require not only highly parallel high-performance computing workloads but also the expressiveness and simplicity of scripting languages. In this work we present an interface that allows external C and C++ programs to control a parallel workflow using Swift/T. This interface facilitates the use of existing C/C++ algorithm implementations to run distribute...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012